SIPARUNTON

International Journal of
Interdisciplinary Research

ISSN 2337-0556 (Print)
ISSN 2337-0572 (Online)
Vol 1, Issue 3, October 2013

Comparing the performance of index based searching and ontology based
application of OLAP for information retrieval

Fisnik DALIPI
Department of IT, Faculty of Math-Natural Sciences, Tetovo State University
e-mail: fisnik.dalipi@unite.edu.mk

llia NINKA
Department of IT, Faculty of Natural Sciences, University of Tirana
e-mail: ilia.ninka@fshn.edu.al

Abstract

Analyzing the data types and structures in a business environment where data grows rapidly has become a
serious challenge for companies. As most business data are unstructured and modelled into complex models, we
need a solution to perform multidimensional searching for achieving sustainable results. In this paper, we present
the idea of incorporating index searching as part of a standard information retrieval system. We test our concepts
by using business documents from Knauf Radika AD, a leading Macedonian plasterboard manufacturer located
in Diber. Further, we describe and propose a novel architecture which is including an ontology-based approach
by integrating OLAP and information extraction attributes to access structured and unstructured data, mainly
organized in form of documents. In our first demonstration, the query performance was reduced as more
documents were added to the index, and consequently the growth factor becomes very low. While at the second
case, when a user performs navigation throughout the OLAP report, it is possible to track the user context

information which can be used for searching other relevant documents.

1. Introduction

Considering the fact that most business data is highly
unstructured and mainly organized as file based, the need
for access to structured data is increasing. In order to
reduce the cost for finding information and achieve relevant
results there is a need to build a very complex query which
indeed is a serious challenge.

Taking into account the continuous rise of world’s
information resources, it is undoubtedly necessary for
enterprises to obtain aggregate, process and utilize them in
an appropriate manner in order to maximize the efficiency
of business activities.

Since the document libraries (or a number of sources
to filter from) are becoming bigger and bigger, it is
crucial to provide a trusted system which would be able
to find the resources relevant to user's needs. This is a
main goal of information retrieval (IR) systems [1].

Following the definition in [2] an IR model is a quadruple
[D,Q,F, sim], where:

+ D is a set of (logical representations of) documents.

+ Qs a set of (logical representations of) queries.

* F is a framework for modeling documents, queries, and
their relationships.

+sim: Q x D — U is a ranking function that defines an
association between queries and documents, where U is a
totally ordered set (commonly [0,1], or P, or a subset
thereof). This ranking and the total order in U define an
order in the set of documents, for a fixed query.

2, Vector space model

In the vector space model text is represented by a vector of
terms [3]. The definition of a term is not inherent in the
model, but terms are typically words and phrases. If words
are chosen as terms, then every word in the vocabulary
becomes an independent dimension in a very high
dimensional vector space. Any text can then be
represented by a vector in this high dimensional space. If a
term belongs to a text, it gets a non-zero value in the text-
vector along the dimension corresponding to the term.
Since any text contains a limited set of terms (the
vocabulary can be millions of terms), most text vectors are
very sparse. Most vector based systems operate in the
positive quadrant of the vector space, i.e., no term is
assigned a negative value [4].

Following the presented previous notation, we define the
vector space model as below:

Copyright © Center for Science, Academic Research and Arts — CSARA (Qendra pér shkencé, kérkime akademike dhe arte Csara)-This is an open
access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

mailto:fisnik.dalipi@unite.edu.mk
mailto:ilia.ninka@fshn.edu.al

ISSN 2337-0556 (Print)
ISSN 2337-0572 (Online)

SIPARUNTON
International Journal Journal of Interdisciplinary Research

Vol 1, Issue 3,
October 2013

» D: documents are represented by a vector of words or
index terms occurring in the document. Each term in the
document - or, for that matter, each pair (t, dj) — has a
positive, non-binary associated weight wij.

* Q: queries are represented as a vector of words or
index terms occurring in the query. Each term in the query-
or, for that matter, each pair (1, q) — has a positive, non-
binary associated weight wi,q.

o sim(t}’,&j) = cos(q, &j} =

Since wi> 0 and wiq > 0, sim(q, dj) varies from 0 to 1, i.e.
1.0 for identical vectors and 0.0 for orthogonal vectors.
Thus, instead of attempting to predict whether a document
is relevant or not, the vector model ranks the documents
according to their degree of similarity to the query.

3. Implementing the index-based searching

In our work we were granted access to business
documents at Knauf. To be able to evaluate text mining
techniques we implement a test framework based on
Lucene!, which is a high-performance, fully-featured text
search engine library written entirely in Java. It is an open
source search engine APl released by the Apache
Software Foundation. According to [2] the vector space
model is based on assumption that the same terms occur
in both the query and the relevant document. The Lucene
API offers a simple way to extract the term-documented
frequency matrices for each indexed field. Before we go
further, we start this section by explaining the meaning of
an index. An index is identical to an index at the back of the
book, where we can find the search terms and their
corresponding pages in a book. Similarly, when we create
an index based on documents, we can query the index to
discover what documents fit our search terms. We will both
create an index and make searches against the index.
However, these are conceptually two different tasks. The
structure of the demonstrated project is shown here. We
have a directory called "fajlla_ne_Index" that is composed
of text files that we are aiming to index. We also have a
directory called "Skedari_Index". This will contain the index
that we create. Our project is using the default lucene-core
jar file with the class named LuceneKnauf.

We are going to index two text files in the "fajlla_ne_Index"
directory. Within the first one, gypsum1l.txt, there is
information about gypsum material. This file contains these
words: gur, gips, miniera, qymyr, kristal. The second text
file, gypsum2.txt, contains some other gypsum related
material. It contains the following words: suva, sediment,
shkemb, miniera, renaturim.

Firstly, we have to create an index through its method
createindex(). We also make use of an IndexWriter object
to create and update the index whereby a directory name
can be passed to the IndexWriter constructor. IndexWriter
has several constructors. We used a constructor that takes
three arguments. The first argument represents the
location of the directory where the index files should

1 http.//lucene.apache.org/core/

+ F is an algebraic model over vectors in a t-dimensional
space.

 sim estimates the degree of similarity of a document d;
to a query q as the correlation between the vectors dj and
g. This correlation can be quantified, for instance, by the
cosine of the angle between the two vectors:

- t
g-d; Tiz1Wig X Wij

glxld,| t ; t ;
1| JZE=1""’E.q2 x \[-Ei=:ﬂ""'1'.jd

appear. The second argument is an AnalizuesiStandard
object. An analyzer symbolizes the principles or the policy
for extracting index terms from text. The third argument
rikrijolndexNeseEkziston is a boolean parameter set to be
true, which notifies the IndexWriter to rebuild the index
from the beginning if it already exists.

, We go via the files in the "fajlla_ne_Index" directory. For
all particular files, we create a Lucene document object,
which is made of a set of fields that can be the content,
metadata, and other data related to the actual document.
We then create two fields and accompany them to the
document. The first field is used to save and copy the
canonical path to each text file in the index. We specify to
copy it in the index through the Field.Store.YES argument.
We further define and make sure to not let the Analyzer
tokenize the path through the
Field.Index.UN_TOKENIZED. This is why the path stays
whole and integral and doesn't get fragmentized up by the
Analyzer in the index. The second field represents the
contents of the file. The contents get tokenized and
indexed, but they will not be stored in the index. The
reason for this to happen is because as an argument we
used a Reader to the Field constructor. If we'd like to save
the all contents in the index, we need to use a String
instead of Reader. The process adding all of the
documents or file attachments to the index is performed
through the method addDocument(). Afterwards, the index
is then optimized and then closed. Now, our index has
been created and now we can search it. But for searching
to take place, we need to take our kerkoString and then
create a query object. In order to create the query, we
create a QueryParser, which will specify that the target of
searching will be within the contents field. We use a
AnalizuesiStandard to analyze the text in kerkoString for
search terms. We get the Query object by calling the
parse() method on our QueryParser object with the
kerkoString as an argument. Now, after completing the
aforementioned operations, we can perform our search. In
order to start searching we need the IndexSearcher's
method search(). We saw that in the IndexSearcher the
Query object is the argument. The searching results are
associated with the Hits object. After performing several
iterations over the Hits, as an output we get each individual
Hit object. Along with the number of text occurrence, we
obtain the path field from the document showing the

-170 -

http://lucene.apache.org/core/

ISSN 2337-0556 (Print)
ISSN 2337-0572 (Online)

SIPARUNTON
International Journal Journal of Interdisciplinary Research

Vol 1, Issue 3,
October 2013

location of that file. We performed several searches using
the following queries: "qymyr", "miniera”, "miniera AND
renaturim”, "miniera and renaturim”, and "kalcium OR
renaturim”. The console output from executing

LuceneKnauf is the following:

Kerkimi per 'qymyr'

Eshte gjetur: 2

Hit:
C:\projekte\workspace\demo\fajlla_ne_Index\gypsum1.ixt
Hit:
C:\projekte\workspace\demo\fajlla_ne_Index\gypsum2.txt
Kerkimi per 'miniera’

Eshte gjetur: 1

Hit:
C:\projekte\workspace\demo\fajlla_ne_Index\gypsum2.txt
Kerkimi per 'miniera AND renaturim’

Eshte gjetur: 0

Kerkimi per 'miniera and renaturim'

Eshte gjetur: 2

Hit:
C:\projekte\workspace\demo\fajlla_ne_Index\gypsum1.ixt

public class LuceneKnauf {

Hit:
C:\projekte\workspace\demol\fajlla_ne_Index\gypsumz2.txt\
Kerkimi per 'kalcium OR renaturim’

Eshte gjetur: 1

Hit:
C:\projekte\workspace\demo\fajlla_ne_Index\gypsum1.txt
According to the search results, we both have "qymyr"
listed but only we have "miniera". Additionally, notice the
use of "AND" versus "and". The uppercase "AND" results in
a boolean query, which requires "miniera" and "renaturim"
to both be in a document in order for it to be a hit. The
lowercase "and" is treated as an irrelevant word, so
"miniera and renaturim" is like Kerkimi per "miniera
renaturim”, which returns 2 hits since "miniera" is found in
one text file and "renaturim” is found in the other text file.
An examination of the STOP_WORDS of
AnalizuesiStandard shows that it uses that StopAnalyzer
class' ENGLISH_STOP_WORDS. As you can see below,
"and" is listed as one of the stop words, which explains why
it was ignored in the "miniera and renaturim" query.

public static final String FILES_TO_INDEX_DIRECTORY = "fajlla_ne_Index";
public static final String INDEX_DIRECTORY = "Skedari_Index";

public static final String FIELD_PATH = "path";
public static final String FIELD_CONTENTS = "contents";

public static void main(String[] args) throws Exception {

createlndex();
searchIndex(
searchindex(

(

‘qymyr”);
"'miniera");

searchindex("miniera AND renaturim");

searchindex("miniera and renaturim");

searchindex("kalcium OR renaturim");

}

public static void createlndex() throws CorruptindexException, LockObtainFailedException, IOException {

Analyzer analyzer = new AnalizuesiStandard();

boolean rikrijoIndexNeseEkziston = true;

IndexWriter indexWriter = new IndexWriter(INDEX_DIRECTORY, analyzer,

rikrijoIndexNeseEkziston);

File dir = new File(FILES_TO_INDEX_DIRECTORY);

-171-

ISSN 2337-0556 (Print) SIPARUNTON Vol 1, Issue 3,
ISSN 2337-0572 (Online) International Journal Journal of Interdisciplinary Research October 2013

File[] files = dir.listFiles();

for (File file : files) {
Document document = new Document();
String path = file.getCanonicalPath();

document.add(new Field(FIELD_PATH, path, Field.Store.YES,
Field.Index.UN_TOKENIZED));

Reader reader = new FileReader(file);
document.add(new Field(FIELD_CONTENTS, reader));

indexWriter.addDocument(document);

indexWriter.optimize();

indexWriter.close();

}

public static void searchindex(String kerkoString) throws IOException, ParseException {
System.out.printin("Kerkimi per ™ + kerkoString + "™");
Directory directory = FSDirectory.getDirectory(INDEX_DIRECTORY);
IndexReader indexReader = IndexReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
Analyzer analyzer = new AnalizuesiStandard();
QueryParser queryParser = new QueryParser(FIELD_CONTENTS, analyzer);
Query query = queryParser.parse(kerkoString);
Hits hits = indexSearcher.search(query);
System.out.printin("Eshte gjetur: " + hits.length() + "here");
I[terator<Hit> it = hits.iterator();
while (it.hasNext()) {
Hit hit = it.next();
Document document = hit.getDocument();
String path = document.get(FIELD_PATH);
System.out.printin("Lokacioni: " + path);

Further

public static final String[] ENGLISH_STOP_WORDS = {
llall, llanll, llandll’ llarell, “aS“, Ilatll’ Ilbell’ “but"’ llbyll’
llforll, llifll, llinll, llintoll, "iS“, llitlly
"no", "not", "of", "on", "or", "such",

"that", "the", "their", "then", "there", "these",

"they", "thiS“, "tO", "WaS , Wi”", llwithll

-172 -

csara

Center for Science, Academic
Research and Arts

SIPARUNTON

International Journal of
Interdisciplinary Research

ISSN 2337-0556 (Print)
ISSN 2337-0572 (Online)
Vol 1, Issue 3, October 2013

When we examined our project after LuceneKnauf has
executed, we can see that index files have been created in
the "Skedari_Index" directory.

4. Semantic information retrieval

Recently, ontologies have been used in Information
Retrieval to improve recall and precision [5]. Its principal
use is related to query expansion, which consists in looking
for the terms in the ontology more related to the query
terms, to use them as a part of the query. Much ontology
has been designed for the purposes of managing and
extracting semantic knowledge from online literature and
databases.

Search goal

Data retrieval -
Information retrieval -
Question answering -

Ounloiogy redrieval <

Scope

Web
Domain repository -
Desktop search -

Ontology
encoding

- Proprietary
- Open standard

representation

IR systems that

use semantic technologies for enhancing different parts of
IR are called semantic search systems. Searching for the
online ontologies, fact extraction from the ontologies,
question answering, filtering and ranking retrieved
information are usually put under the wing of semantic
search. The introduction of ontologies to move beyond the
capabilities of current search technologies has been an
often portrayed scenario in the area of semantic-based
technologies since the late nineties [6].

Based on literature review, below we provide the

categories of semantic search engines. [7,8] [15,16].

Search phase

- Indexing/Annotation
- Query processing/modification

Ranking
Semantic Architecture
Search
- Meta
- Stand alone
User input
- Keyword
Kn°w|edge - Natural language

- Graphical browsing
- Form-based
- Structured query
Taxonomy - Interactive
- Thesaurus
- Ontology w/ object properties

Ontology w/ axioms

Fig 1. Classification of semantic search systems

In spite of the fact that that these concepts have shown
several enhancements compared to classic keyword
searching methodology, it is not clear among researchers
that these techniques could be suitable to deal with large
scale information sources.

5. Integrating OLAP to enhance the searching
functionality

The approach introduced in this paper is based on the
principle of a Web-based portal system, incorporating three
information sources: an OLAP system for accessing the
data warehouse, a document management system (DMS)
to make use of the unstructured data in form of documents,

and native portal content such as business documents.
The main reason for the usage of the OLAP system, with
its own individual metadata set, is to achieve the process of
metadata integration. For this purpose we also propose to
enhance the standard data warehouse ETL (extract,
transform, and load). As regards the DMS, however, we
presume that the system supports RDF-based metadata
storage. For the system components to understand and
communicate with each other, we propose a global
ontology to be used, which will furnish the needed
information for mapping between different metadata
constructs.

Copyright © Center for Science, Academic Research and Arts — CSARA (Qendra pér shkencé, kérkime akademike dhe arte Csara)-This is an open
access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

";ara

Center for Science, Academic
Rese: acha dArl

SIPARUNTON

International Journal of
Interdisciplinary Research

ISSN 2337-0556 (Print)
ISSN 2337-0572 (Online)
Vol 1, Issue 3, October 2013

S —

Web browser I

-

Semantic search

l OL AP portlet ol

|———| Content portiet l

/

| OL AP swvstem

OLAP
metadata

T s =

Global ontology

ETI. process

Data warehouse

r’@

Operative DB

Document
Repository

Fig 2. The architecture of the proposed system

Figure 2 shows the global architecture of the proposed
system. The enhanced ETL process supplies the data
warehouse and refreshes the ontology by keeping it
updated. The user interface can be represented by many
different portal components. For this reason, we propose
some pluggable software components so-called portlets to
be responsible for the user interface. Portlets can provide
the same functionality as an ordinary web application, but
they run inside a portal server, which means that they can
be arranged on different portal pages and access to them
can be controlled by the server. They can be built by any
web framework such as Java Server Faces, Apache
Wicket and so on. We assume that the proposed system is
made of three such portlets: semantic search portlet, OLAP
portlet and content portlet. Firstly, the semantic search
portlet here represents the search user interface and the
primary role of it is to query the metadata. Secondly, the
OLAP portlet includes the interface with common OLAP
operations, such as slice and dice, drill down, roll up and
pivot. Thirdly, the content portlet is proposed to be used for
displaying all other contents related to the native portal. For
example, as content can be the news article.

The OLAP portlet can access the OLAP metadata through
the OLAP system. On the other hand, the primary role of
DMS will be for controlling the access to the document set;
it can have an RDF compatible interface. The global
ontology will supply the DMS with metadata.

The heart of the architecture is the global ontology. The
overall data model, the resource metadata and the
mapping information can be included here. Moreover, the

global ontology can include instances for business objects,
such as the customers, products, time, location, and so on,
which are of great importance during the document
searching. These business objects and the metadata for
OLAP reports can be generated also during the ETL
process. They also can serve as data model to represent
the OLAP dimensions. When a user will perform navigation
throughout the OLAP report, we can track the user context
information which can be used for searching other relevant
documents.

6. Conclusions

The main objective of this paper was to present the idea of
incorporating index searching as part of a standard
information retrieval system. We provided our concepts
and they were tested by using real business documents.

Besides this, we described and proposed a novel
architecture which is including an ontology-based approach
by integrating OLAP and information extraction attributes to
access structured and unstructured data, mainly organized
in form of documents. We propose the OLAP integration
because its tools allow a breakdown structure of the data
where we start with a single piece of data and we can
dissect it into a series of levels looking at the data for
something interesting.

As a result, in our first demonstration, the query
performance was reduced as more documents were added
to the index, and consequently the growth factor becomes

Copyright © Center for Science, Academic Research and Arts — CSARA (Qendra pér shkencé, kérkime akademike dhe arte Csara)-This is an open
access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

ISSN 2337-0556 (Print) SIPARUNTON Vol 1, Issue 3,
ISSN 2337-0572 (Online) International Journal Journal of Interdisciplinary Research October 2013

very low. While at the second case, when a user will context information which can be used for searching other
perform navigation throughout the OLAP report, due to relevant documents.
OLAP breakdown structure, it is possible to track the user

1.

References

M. C. Daconta, L. J. Obrst, K. T. Smith, The Semantic Web: A Guide to the Future of XML, Web Services, and
Knowledge Management, John Wiley & Sons, 2003

Baeza-Yates, R. & Ribeiro-Neto, B. (1999), Modern Information Retrieval. Addison-Wesley. ISBN 0-201-39829-X
D'Aquin, M., Gridinoc, L., Sabou, M., Angeletou, S., & Motta, E. (2007). Characterizing

Knowledge on the Semantic Web with Watson. 5th International EON Workshop at International Semantic Web
Conference (ISWC'07). Busan, Korea

D'Aquin, M., Gridinoc, L., Sabou, M., Angeletou, S., & Motta, E. (2007). Characterizing

Knowledge on the Semantic Web with Watson. 5th International EON Workshop at International Semantic Web
Conference (ISWC'07). Busan, Korea

T. Andreasen, J. Nilsson, and H. Thomsen.Ontology-based querying. In Proceedings of the Fourth International
Conference on Flexible Query-Answering Systems, pages 15-26, Warsaw, Poland, Agosto 2000.

Luke, S., Spector, L., & Rager, D. (1996). Ontology-Based Knowledge Discovery on the World-Wide Web.
Internet-Based Information Systems: Papers from the AAAI Workshop. AAAI (pp. 96-102). Menlo Park,
California.

Mangold, C. (2007) “A survey and classification of semantic search approaches”, Int. J. Metadata, Semantics and
Ontology, Vol. 2, No. 1, pp.23-34

Esmaili, K.S. and Abolhassani, H. (2006) “A Categorization Scheme for Semantic Web Search Engines”, In Proc.
of IEEE Conf. on Computer Systems and Applications, pp 171-178.

-175 -

